skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brocato, Enzo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present a new calibration of the peak absolute magnitude of Type Ia supernovae (SNe Ia) based on the surface brightness fluctuations (SBF) method, aimed at measuring the value of the Hubble constant. We build a sample of calibrating anchors consisting of 24 SNe hosted in galaxies that have SBF distance measurements. Applying a hierarchical Bayesian approach, we calibrate the SN Ia peak luminosity and extend the Hubble diagram into the Hubble flow by using a sample of 96 SNe Ia in the redshift range 0.02 <  z  < 0.075, which was extracted from the Combined Pantheon Sample. We estimate a value of H 0  = 70.50 ± 2.37 (stat.) ± 3.38 (sys.) km s −1 Mpc −1 (i.e., 3.4% stat., 4.8% sys.), which is in agreement with the value obtained using the tip of the red giant branch calibration. It is also consistent, within errors, with the value obtained from SNe Ia calibrated with Cepheids or the value inferred from the analysis of the cosmic microwave background. We find that the SNe Ia distance moduli calibrated with SBF are on average larger by 0.07 mag than those calibrated with Cepheids. Our results point to possible differences among SNe in different types of galaxies, which could originate from different local environments and/or progenitor properties of SNe Ia. Sampling different host galaxy types, SBF offers a complementary approach to using Cepheids, which is important in addressing possible systematics. As the SBF method has the ability to reach larger distances than Cepheids, the impending entry of the Vera C. Rubin Observatory and JWST into operation will increase the number of SNe Ia hosted in galaxies where SBF distances can be measured, making SBF measurements attractive for improving the calibration of SNe Ia, as well as in the estimation of H 0 . 
    more » « less
  2. Abstract The Vera C. Rubin Legacy Survey of Space and Time (LSST) holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey’s first light. 
    more » « less
  3. The standard model of cosmology has provided a good phenomenological description of a wide range of observations both at astrophysical and cosmological scales for several decades. This concordance model is constructed by a universal cosmological constant and supported by a matter sector described by the standard model of particle physics and a cold dark matter contribution, as well as very early-time inflationary physics, and underpinned by gravitation through general relativity. There have always been open questions about the soundness of the foundations of the standard model. However, recent years have shown that there may also be questions from the observational sector with the emergence of differences between certain cosmological probes. In this White Paper, we identify the key objectives that need to be addressed over the coming decade together with the core science projects that aim to meet these challenges. These discordances primarily rest on the divergence in the measurement of core cosmological parameters with varying levels of statistical confidence. These possible statistical tensions may be partially accounted for by systematics in various measurements or cosmological probes but there is also a growing indication of potential new physics beyond the standard model. After reviewing the principal probes used in the measurement of cosmological parameters, as well as potential systematics, we discuss the most promising array of potential new physics that may be observable in upcoming surveys. We also discuss the growing set of novel data analysis approaches that go beyond traditional methods to test physical models. These new methods will become increasingly important in the coming years as the volume of survey data continues to increase, and as the degeneracy between predictions of different physical models grows. There are several perspectives on the divergences between the values of cosmological parameters, such as the model-independent probes in the late Universe and model-dependent measurements in the early Universe, which we cover at length. The White Paper closes with a number of recommendations for the community to focus on for the upcoming decade of observational cosmology, statistical data analysis, and fundamental physics developments 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  4. Abstract The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events. 
    more » « less